skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Youpeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph convolutional networks (GCNs) are fundamental in various scientific applications, ranging from biomedical protein-protein interactions (PPI) to large-scale recommendation systems. An essential component for modeling graph structures in GCNs is sparse general matrix-matrix multiplication (SpGEMM). As the size of graph data continues to scale up, SpGEMMs are often conducted in an out-of-core fashion due to limited GPU memory space in resource-constrained systems. Albeit recent efforts that aim to alleviate the memory constraints of out-of-core SpGEMM through either GPU feature caching, hybrid CPU-GPU memory layout, or performing the computation in sparse format, current systems suffer from both high I/O latency and GPU under-utilization issues. In this paper, we first identify the problems of existing systems, where sparse format data alignment and memory allocation are the main performance bottlenecks, and propose AIRES, a novel algorithm-system co-design solution to accelerate out-of-core SpGEMM computation for GCNs. Specifically, from the algorithm angle, AIRES proposes to alleviate the data alignment issues on the block level for matrices in sparse formats and develops a tiling algorithm to facilitate row block-wise alignment. On the system level, AIRES employs a three-phase dynamic scheduling that features a dual-way data transfer strategy utilizing a tiered memory system: integrating GPU memory, GPU Direct Storage (GDS), and host memory to reduce I/O latency and improve throughput. Evaluations show that AIRES significantly outperforms the state-of-the-art methods, achieving up to 1.8× lower latency in real-world graph processing benchmarks. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026